Ribonucleotide reductase modularity: Atypical duplication of the ATP-cone domain in Pseudomonas aeruginosa.
نویسندگان
چکیده
The opportunistic pathogen Pseudomonas aeruginosa, which causes serious nosocomial infections, is a gamma-proteobacterium that can live in many different environments. Interestingly P. aeruginosa encodes three ribonucleotide reductases (RNRs) that all differ from other well known RNRs. The RNR enzymes are central for de novo synthesis of deoxyribonucleotides and essential to all living cells. The RNR of this study (class Ia) is a complex of the NrdA protein harboring the active site and the allosteric sites and the NrdB protein harboring a tyrosyl radical necessary to initiate catalysis. P. aeruginosa NrdA contains an atypical duplication of the N-terminal ATP-cone, an allosteric domain that can bind either ATP or dATP and regulates the overall enzyme activity. Here we characterized the wild type NrdA and two truncated NrdA variants with precise N-terminal deletions. The N-terminal ATP-cone (ATP-c1) is allosterically functional, whereas the internal ATP-cone lacks allosteric activity. The P. aeruginosa NrdB is also atypical with an unusually short lived tyrosyl radical, which is efficiently regenerated in presence of oxygen as the iron ions remain tightly bound to the protein. The P. aeruginosa wild type NrdA and NrdB proteins form an extraordinarily tight complex with a suggested alpha4beta4 composition. An alpha2beta2 composition is suggested for the complex of truncated NrdA (lacking ATP-c1) and wild type NrdB. Duplication or triplication of the ATP-cone is found in some other bacterial class Ia RNRs. We suggest that protein modularity built on the common catalytic core of all RNRs plays an important role in class diversification within the RNR family.
منابع مشابه
Subunit and small-molecule interaction of ribonucleotide reductases via surface plasmon resonance biosensor analyses
Ribonucleotide reductase (RNR) synthesizes deoxyribonucleotides for DNA replication and repair and is controlled by sophisticated allosteric regulation involving differential affinity of nucleotides for regulatory sites. We have developed a robust and sensitive method for coupling biotinylated RNRs to surface plasmon resonance streptavidin biosensor chips via a 30.5 A linker. In comprehensive s...
متن کاملNovel ATP-cone-driven allosteric regulation of ribonucleotide reductase via the radical-generating subunit
Ribonucleotide reductases (RNRs) are key enzymes in DNA metabolism, with allosteric mechanisms controlling substrate specificity and overall activity. In RNRs, the activity master-switch, the ATP-cone, has been found exclusively in the catalytic subunit. In two class I RNR subclasses whose catalytic subunit lacks the ATP-cone, we discovered ATP-cones in the radical-generating subunit. The ATP-c...
متن کاملUnique ATP - cone - driven allosteric regulation of ribonucleotide 1 reductase via the radical - generating subunit 2
15 Ribonucleotide reductases (RNRs) are key enzymes in DNA synthesis and repair, with 16 sophisticated allosteric mechanisms controlling both substrate specificity and overall activity. 17 In RNRs, the activity master-switch, the ATP-cone, has been found exclusively in the 18 catalytic subunit. In two class I RNR subclasses whose catalytic subunit lacks the ATP-cone, 19 we discovered ATP-cones ...
متن کاملUnique ATP - cone - driven allosteric regulation of ribonucleotide 1 reductase via the radical - generating subunit
15 Ribonucleotide reductases (RNRs) are key enzymes in DNA synthesis and repair, with 16 sophisticated allosteric mechanisms controlling both substrate specificity and overall activity. 17 In RNRs, the activity master-switch, the ATP-cone, has been found exclusively in the 18 catalytic subunit. In two class I RNR subclasses whose catalytic subunit lacks the ATP-cone, 19 we discovered ATP-cones ...
متن کاملShift in ribonucleotide reductase gene expression in Pseudomonas aeruginosa during infection.
The roles of different ribonucleotide reductases (RNRs) in bacterial pathogenesis have not been studied systematically. In this work we analyzed the importance of the different Pseudomonas aeruginosa RNRs in pathogenesis using the Drosophila melanogaster host-pathogen interaction model. P. aeruginosa codes for three different RNRs with different environmental requirements. Class II and III RNR ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 281 35 شماره
صفحات -
تاریخ انتشار 2006